Cart (Loading....) | Create Account
Close category search window
 

MDL-based segmentation and motion modeling in a long image sequence of scene with multiple independently moving objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gu, H. ; Product. Eng. Res. Lab., Matsushita Electr. Ind. Co. Ltd., Kadoma, Japan ; Shirai, Y. ; Asada, M.

This paper presents a method for spatiotemporal segmentation of long image sequences of scenes which include multiple independently moving objects, based on the minimum description length (MDL) principle. First, a family of motion models is constructed, each of which corresponds to a physically meaningful motion such as translation with constant velocity or a combination of translation and rotation. Then, the motion description length is formulated. When an object changes the type of the motion or a new part of an object appears, the corresponding temporal or spatial segmentation is carried out. Ambiguous segmentation of two consecutive images can be resolved by minimizing the motion description length in a long sequence of images. Experiments on several real image sequences show the validity of our method

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:18 ,  Issue: 1 )

Date of Publication:

Jan 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.