By Topic

The Triptych FPGA architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Borriello, G. ; Dept. of Comput. Sci. & Eng., Washington Univ., Seattle, WA, USA ; Ebeling, C. ; Hauck, S.A. ; Burns, S.

Field-programmable gate arrays (FPGAs) are an important implementation medium for digital logic. Unfortunately, they currently suffer from poor silicon area utilization due to routing constraints. In this paper we present Triptych, an FPGA architecture designed to achieve improved logic density with competitive performance. This is done by allowing a per-mapping tradeoff between logic and routing resources, and with a routing scheme designed to match the structure of typical circuits. We show that, using manual placement, this architecture yields a logic density improvement of up to a factor of 3.5 over commercial FPGAs, with comparable performance. We also describe Montage, the first FPGA architecture to fully support asynchronous and synchronous interface circuits.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:3 ,  Issue: 4 )