Cart (Loading....) | Create Account
Close category search window
 

Automatically Determining the Number of Clusters in Unlabeled Data Sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Liang Wang ; Dept. of Comput. Sci. & Software Eng., Univ. of Melbourne, Melbourne, VIC ; Leckie, C. ; Ramamohanarao, K. ; Bezdek, J.

Clustering is a popular tool for exploratory data analysis. One of the major problems in cluster analysis is the determination of the number of clusters in unlabeled data, which is a basic input for most clustering algorithms. In this paper we investigate a new method called DBE (dark block extraction) for automatically estimating the number of clusters in unlabeled data sets, which is based on an existing algorithm for visual assessment of cluster tendency (VAT) of a data set, using several common image and signal processing techniques. Basic steps include: 1) generating a VAT image of an input dissimilarity matrix; 2) performing image segmentation on the VAT image to obtain a binary image, followed by directional morphological filtering; 3) applying a distance transform to the filtered binary image and projecting the pixel values onto the main diagonal axis of the image to form a projection signal; 4) smoothing the projection signal, computing its first-order derivative, and then detecting major peaks and valleys in the resulting signal to decide the number of clusters. Our new DBE method is nearly "automatic", depending on just one easy-to-set parameter. Several numerical and real-world examples are presented to illustrate the effectiveness of DBE.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:21 ,  Issue: 3 )

Date of Publication:

March 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.