Cart (Loading....) | Create Account
Close category search window
 

High-frequency scattering of a whispering gallery mode by a cylindrically curved surface with second-order generalized impedance boundary conditions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Buyukaksoy, A. ; Fac. of Electr. & Electron. Eng., Tech. Univ. Istanbul, Turkey ; Bicakci, O.

A high-frequency solution is derived for the diffraction of electromagnetic waves by a cylindrically curved metallic sheet whose concave and convex faces are coated by dielectric layers of the same physical properties and thicknesses. After simulating the effects of the grounded dielectric layer by second-order generalized impedance boundary conditions, a canonical problem is formulated in an infinitely extended angular space from which explicit asymptotic expressions for the diffraction coefficients are obtained through the asymptotic solution of a Hilbert problem

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:43 ,  Issue: 12 )

Date of Publication:

Dec 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.