By Topic

A massively parallel computation strategy for FDTD: time and space parallelism applied to electromagnetics problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
A. Fijany ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA ; M. A. Jensen ; Y. Rahmat-Samii ; J. Barhen

We present a novel strategy for incorporating massive parallelism into the solution of Maxwell's equations using finite-difference time-domain methods. In a departure from previous techniques wherein spatial parallelism is used, our approach exploits massive temporal parallelism by computing all of the time steps in parallel. Furthermore, in contrast to other methods which appear to concentrate on explicit schemes such as Yee's (1966) algorithm, our strategy uses the implicit Crank-Nicolson technique which provides superior numerical properties. We show that the use of temporal parallelism results in algorithms which offer a massive degree of coarse grain parallelism with minimum communication and synchronization requirements. Due to these features, the time-parallel algorithms are particularly suitable for implementation on emerging massively parallel multiple instruction-multiple data (MIMD) architectures. The methodology is applied to a circular cylindrical configuration, which serves as a testbed problem for the approach, to demonstrate the massive parallelism that can be exploited. We also discuss the generalization of the methodology for more complex problems

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:43 ,  Issue: 12 )