Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Direction finding in phased arrays with a neural network beamformer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Southall, H.L. ; USAF Rome Lab. Electromagnetics & Reliability Directorate, Hanscom AFB, MA, USA ; Simmers, J.A. ; O'Donnell, T.H.

Adaptive neural network processing of phased-array antenna received signals promises to decrease antenna manufacturing and maintenance costs while increasing mission uptime and performance between repair actions. We introduce one such neural network which performs aspects of digital beamforming with imperfectly manufactured, degraded, or failed antenna components. This paper presents measured results achieved with an adaptive radial basis function (ARBF) artificial neural network architecture which learned the single source direction finding (DF) function of an eight-element X-band array having multiple, unknown failures and degradations. We compare the single source DF performance of this ARBF neural network, whose internal weights are computed using a modified gradient descent algorithm, with another radial basis function network, Linnet, whose weights are calculated using linear algebra. Both networks are compared to a traditional DF approach using monopulse

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:43 ,  Issue: 12 )