By Topic

A Unified Design Framework for Single-Channel Dispersion-Managed Terrestrial Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bononi, A. ; Dipt. di Ing. dell''Inf., Univ. degli Studi di Parma, Parma ; Serena, P. ; Orlandini, A.

This paper provides a unified framework to the design, performance optimization, and accurate numerical simulation of periodic, dispersion-managed (DM) single-channel long-haul optical transmission systems for nonsoliton on-off keying (OOK) modulation. The focus is on DM terrestrial systems, with identical spans composed of a long transmission fiber compensated at the span end by a linear dispersion compensating module, with pre- and postcompensation fibers at the beginning and end of the link. The framework is based on the dispersion-managed nonlinear Schrodinger equation (DM-NLSE). First, expressions of the DM-NLSE kernel are provided both in the frequency and the time domain, and a novel map strength parameter, appropriate for terrestrial systems, is introduced. It is then shown that the DM-NLSE contains all the basic information needed for system design, as summarized by three parameters: i) nonlinear phase, ii) in-line dispersion, and iii) map strength. Through a large-signal perturbative analysis of the DM-NLSE, the well-known linear relationship between the in-line dispersion and the optimal precompensation is derived, along with the large-signal step response of the DM link, from which the ghost pulses energy growth and a first estimation of the link memory are derived. The DM-NLSE is then linearized around the average signal field to get the amplitude/phase small-signal system matrix of the overall DM link, including pre- and postcompensation. By a singular-value decomposition of the small-signal DM link matrix, a novel expression of the memory of the optimized DM link is finally provided. Knowledge of such a memory is mandatory to run accurate numerical simulations and laboratory measurements with a sufficiently long pseudorandom bit sequence to avoid patterning effects.

Published in:

Lightwave Technology, Journal of  (Volume:26 ,  Issue: 22 )