Cart (Loading....) | Create Account
Close category search window
 

Advanced control design for voltage scaling converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Albea, C. ; INPG, Gipsa-Lab. Grenoble, Grenoble ; Canudas de Wit, C. ; Gordillo, F.

In low-power electronics, achieving a high energy efficiency has great relevance. Nowadays, global asynchronous local synchronous systems enables to use a local dynamic voltage scaling architecture, this technique allows achieve a high energy efficiency. Moreover, local dynamic voltage scaling can be implemented using different approaches. One of them is Vdd-Hopping technique. In this paper, different controllers are designed for a Vdd-Hopping system implemented in a novel discrete converter in order to search for control strategies that present better performance in terms of dissipated energy reduction. It is shown here that some of the provided control strategies not only reduce the dissipated energy, but also improves the current transients are improved.

Published in:

Industrial Electronics, 2008. IECON 2008. 34th Annual Conference of IEEE

Date of Conference:

10-13 Nov. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.