By Topic

QUC-Tree: Integrating Query Context Information for Efficient Music Retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jialie Shen ; Sch. of Inf. Syst., Singapore Manage. Univ., Singapore ; Dacheng Tao ; Xuelong Li

In this paper, we introduce a novel indexing scheme-query context tree (QUC-tree) to facilitate efficient query sensitive music search under different query contexts. Distinguished from the previous approaches, QUC-tree is a balanced multiway tree structure, where each level represents the data space at different dimensionality. Before the tree structure construction, principle component analysis (PCA) is applied for data analysis and transforming the raw composite features into a new feature space sorted by the importance of acoustic features. The PCA transformed data and reduced dimensions in the upper levels can alleviate suffering from dimensionality curse. To accurately mimic human perception, an extension called QUC +-tree is proposed, which further applies multivariate regression and EM based algorithm to estimate the weight of each individual feature. The comprehensive extensive experiments to evaluate the proposed structures against state-of-art techniques based on different datasets. The experimental results demonstrate the superiority of our technique.

Published in:

IEEE Transactions on Multimedia  (Volume:11 ,  Issue: 2 )