By Topic

A Novel Video Summarization Based on Mining the Story-Structure and Semantic Relations Among Concept Entities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bo-Wei Chen ; Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan ; Jia-Ching Wang ; Jhing-Fa Wang

Video summarization techniques have been proposed for years to offer people comprehensive understanding of the whole story in the video. Roughly speaking, existing approaches can be classified into the two types: one is static storyboard, and the other is dynamic skimming. However, despite that these traditional methods give brief summaries for users, they still do not provide with a concept-organized and systematic view. In this paper, we present a structural video content browsing system and a novel summarization method by utilizing the four kinds of entities: who, what, where, and when to establish the framework of the video contents. With the assistance of the above-mentioned indexed information, the structure of the story can be built up according to the characters, the things, the places, and the time. Therefore, users can not only browse the video efficiently but also focus on what they are interested in via the browsing interface. In order to construct the fundamental system, we employ maximum entropy criterion to integrate visual and text features extracted from video frames and speech transcripts, generating high-level concept entities. A novel concept expansion method is introduced to explore the associations among these entities. After constructing the relational graph, we exploit graph entropy model to detect meaningful shots and relations, which serve as the indices for users. The results demonstrate that our system can achieve better performance and information coverage.

Published in:

Multimedia, IEEE Transactions on  (Volume:11 ,  Issue: 2 )