Cart (Loading....) | Create Account
Close category search window
 

Synthesis and Optimization of Pipelined Packet Processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Soviani, C. ; Synopsys Inc., Mountain View, CA ; Hadzic, I. ; Edwards, S.A.

We consider pipelined architectures of packet processors consisting of a sequence of simple packet-processing modules interconnected by first-in first-out buffers. We propose a new model for describing their function, an automated synthesis technique that generates efficient hardware for them, and an algorithm for computing minimum buffer sizes that allow such pipelines to achieve their maximum throughput. Our functional model provides a level of abstraction familiar to a network protocol designer; in particular, it does not require knowledge of register-transfer-level hardware design. Our synthesis tool implements the specified function in a sequential circuit that processes packet data a word at a time. Finally, our analysis technique computes the maximum throughput possible from the modules and then determines the smallest buffers that can achieve it. Experimental results conducted on industrial-strength examples suggest that our techniques are practical. Our synthesis algorithm can generate circuits that achieve 40 Gb/s on field-programmable gate arrays, equal to state-of-the-art manual implementations, and our buffer-sizing algorithm has a practically short runtime. Together, our techniques make it easier to quickly develop and deploy high-speed network switches.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:28 ,  Issue: 2 )

Date of Publication:

Feb. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.