By Topic

Dynamic Scan Chain Partitioning for Reducing Peak Shift Power During Test

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Almukhaizim, S. ; Dept. of Comput. Eng., Kuwait Univ., Safat ; Sinanoglu, O.

Scan chain partitioning techniques are quite effective in reducing test power, as the rippling in the clock network, scan chains, and logic is reduced altogether. Partitioning approaches implemented in a static manner may fail to reduce peak power down to the desired level, however, depending on the transition distribution of the problematic pattern in the statically constructed scan chain partitions. In this paper, we propose a dynamic partitioning approach capable of adapting to the transition distribution of any test pattern and, thus, of delivering near-perfect peak power reductions. The proposed dynamic partitioning hardware allows for the partitioning reconfiguration on a per test pattern basis, hence delivering a solution that is test set independent, yet its quality is superior to that of any test set dependent solution.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:28 ,  Issue: 2 )