By Topic

Leveraging Local Intracore Information to Increase Global Performance in Block-Based Design of Systems-on-Chip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cheng-Hong Li ; Dept. of Comput. Sci., Columbia Univ., New York, NY ; Carloni, L.P.

Latency-insensitive design is a methodology for system-on-chip (SoC) design that simplifies the reuse of intellectual property cores and the implementation of the communication among them. This simplification is based on a system-level protocol that decouples the intracore logic design from the design of the intercore communication channels. Each core is encapsulated within a shell, a synthesized logic block that dynamically controls its operation to interface it with the rest of the SoC and absorb any latency variations on its I/O signals. In particular, a shell stalls a core whenever new valid data are not available on the input channels or a downlink core has requested a delay in the data production on the output channels. We study how knowledge about the internal logic structure of a core can be applied to the design of its shell to improve the overall system-level performance by avoiding unnecessary local stalling. We introduce the notion of functional independence condition (FIC) and present a novel circuit design of a generic shell template that can leverage FIC. We propose a procedure for the logic synthesis of a FIC-shell instance that is only based on the analysis of the intracore logic and does not require any input from the designers. Finally, we present a comprehensive experimental analysis that shows the performance benefits and limited design overhead of the proposed technique. This includes the semicustom design of an SoC, an ultrawideband baseband transmitter, using a 90-nm industrial standard cell library.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:28 ,  Issue: 2 )