By Topic

Forecasting the Wind Generation Using a Two-Stage Network Based on Meteorological Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Shu Fan ; Bus. & Economic Forecasting Unit, Monash Univ., Clayton, VIC ; James R. Liao ; Ryuichi Yokoyama ; Luonan Chen
more authors

This paper proposes a practical and effective model for the generation forecasting of a wind farm with an emphasis on its scheduling and trading in a wholesale electricity market. A novel forecasting model is developed based on indepth investigations of meteorological information. This model adopts a two-stage hybrid network with Bayesian clustering by dynamics and support vector regression. The proposed structure is robust with different input data types and can deal with the nonstationarity of wind speed and generation series well. Once the network is trained, we can straightforward predict the 48-h ahead wind power generation. To demonstrate the effectiveness, the model is applied and tested on a 74-MW wind farm located in the southwest Oklahoma of the United States.

Published in:

IEEE Transactions on Energy Conversion  (Volume:24 ,  Issue: 2 )