By Topic

Logic Built-In Self-Test for Core-Based Designs on System-on-a-Chip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
George, K. ; Dept. of Comput. Eng., California State Univ., Fullerton, CA ; Chen, C.-I.H.

A system-on-a-chip (SoC) built with embedded intellectual property (IP) cores offers attractive methodology design reuse, reconfigurability, and customizability. However, the integration of the design-for-testability (DfT) structures of the IP cores in these complex SoCs presents daunting challenges to designers and ultimately affects the time-to-market goals. In this paper, we introduce a design methodology to reduce the time to market by taking core test data from the design environment and automatically generating DfT structures that can easily be integrated into the SoC. A novel automated synthesis methodology to generate an SoC built-in self-test (BIST) to test the IP and custom logic cores is proposed. The proposed technique, i.e., NonExclusive Xor Test of 2D linear feedback shift register (NEXT 2D LFSR), is modeled after the principle of configurable 2D LFSR design, which generates a deterministic sequence of test vectors for random-vector-resistant faults and then random test vectors for random-vector-detectable faults. The basis of this method is to explore the design solution space for optimal 2D LFSR while embedding the test patterns by nonexclusively considering xor gates as the conventional LFSR does but including a simple logic solution for minimal hardware optimization. Moreover, the proposed approach is capable of optimizing the 2D LFSRs with consideration of the don't-care bits in the incompletely specified test patterns.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:58 ,  Issue: 5 )