Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Capacity Scaling in Ad Hoc Networks With Heterogeneous Mobile Nodes: The Super-Critical Regime

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Garetto, M. ; Dept. of Comput. Sci., Univ. of Torino, Torino, Italy ; Giaccone, P. ; Leonardi, E.

We analyze the capacity scaling laws of mobile ad hoc networks comprising heterogeneous nodes and spatial inhomogeneities. Most of previous work relies on the assumption that nodes are identical and uniformly visit the entire network space. Experimental data, however, show that the mobility pattern of individual nodes is usually restricted over the area, while the overall node density is often largely inhomogeneous due to the presence of node concentration points. In this paper we introduce a general class of mobile networks which incorporates both restricted mobility and inhomogeneous node density, and describe a methodology to compute the asymptotic throughput achievable in these networks by the store-carry-forward communication paradigm. We show how the analysis can be mapped, under mild assumptions, into a Maximum Concurrent Flow (MCF) problem over an associated Generalized Random Geometric Graph (GRGG). Moreover, we propose an asymptotically optimal scheduling and routing scheme that achieves the maximum network capacity.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:17 ,  Issue: 5 )