By Topic

Multi-target tracking based on data fusion and distributed detection in sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Juo-Yu Lee ; Dept. of Electr. Eng., Univ. of California, Los Angeles, CA ; Kung Yao

We consider a multi-target tracking problem that aims to simultaneously determine the number and state of mobile targets in the field. Conventional paradigms tend to report only the existence and state of targets according to centralized detection and data fusion. On the contrary, we investigate a multi-target, multi-sensor scenario in which (a) both the number and the state of the targets are unknown a priori; and (b) the detection with respect to targets is employed in a distributed manner. Toward this end, we exploit random set theory, a statistical tool based on Bayesian framework, for establishing generalized likelihood and Markov density functions to yield an iterative filtering procedure. We conduct a study regarding how the design of distributed detection has impact on the result of system level information fusion. The formulation of Bayesian filtering suggests that a design of a tracking system be adaptive to change of detection performance.

Published in:

Sensing Technology, 2008. ICST 2008. 3rd International Conference on

Date of Conference:

Nov. 30 2008-Dec. 3 2008