By Topic

A New Parallel Ant Colony Optimization Algorithm Based on Message Passing Interface

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiong Jie ; Coll. of Electron. & Inf., Yangtze Univ., Jingzhou ; Liu CaiYun ; Chen Zhong

As a successful metaheuristic, ant colony optimization (ACO) performs excellently in solving most combinatorial optimization problems. However, the ACO algorithm needs considerable computational time and resources when the complexity of the problem increases. Parallel implementing is a good ideal to speedup it. A new parallel ant colony optimization (PACO) algorithm is presented, which has the characteristics of coarse-granularity interacting multiant colonies, partially asynchronous parallel implementation and a new information exchange strategy. The code is written in C and MPI and the main application has been executed on the dawn 4000 L parallel computer. We evaluate the PACO algorithm proposed in this paper by study the convergence speed, parallel size scalability and problem size scalability of it. The numerical results indicate that: (1) the PACO algorithm can construct solution better than the sequential ACO (SACO) algorithm and converge faster then SACO; (2) more computational nodes can reduce the computational time obviously and obtain significant speedup; (3) the PACO algorithm is more efficient for the large scale traveling salesman problem with fine quality of solution.

Published in:

Computational Intelligence and Industrial Application, 2008. PACIIA '08. Pacific-Asia Workshop on  (Volume:2 )

Date of Conference:

19-20 Dec. 2008