By Topic

Source second-harmonic control for high efficiency power amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Maeda, M. ; Semicond. Res. Center, Matsushita Electr. Ind. Co. Ltd., Moriguchi, Japan ; Masato, H. ; Takehara, H. ; Nakamura, M.
more authors

A novel technology that drastically improves output power and efficiency of amplifiers has been developed, where source and load second-harmonic impedances, as well as the fundamental impedances, are optimally terminated in the input and output matching circuits. A record high 74% power-added efficiency (PAE) with 31.4 dBm (1.4 W) output power at a frequency of 930 MHz has been achieved as a single-stage saturated amplifier using an ion-implanted GaAs MESFET under the low supply voltage of 3.5 V. As a single-stage linear amplifier, an excellent PAE of 59% with 31.5 dBm output power has been realized at Vd=4.7 V and f=948 MHz. Saturated and linear two-stage power modules operating at 900 MHz band with 31 dBm (1.25 W) output power have been demonstrated for analog and digital cellular applications respectively, the volume of which is as small as 0.4 cc. The saturated power module has achieved a PAE of 66% at Vd=3.5 V, and the linear one has realized a PAE of 50% at Vd=4.7 V

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:43 ,  Issue: 12 )