Cart (Loading....) | Create Account
Close category search window
 

A quaternary partial-response class-IV transceiver for 125 Mbit/s data transmission over unshielded twisted-pair cables: principles of operation and VLSI realization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cherubini, G. ; Res. Div., IBM Zurich Res. Lab., Ruschlikon ; Olcer, S. ; Ungerboeck, G.

The paper describes an experimental transceiver for full-duplex transmission at a rate of 125 Mbit/s over unshielded twisted-pair cables of ordinary voice-grade quality, intended for use in a fiber distributed data interface (FDDI) network. Quaternary partial-response class-IV (QPRIV) overall-channel signaling with near-end crosstalk (NEXT) cancellation and maximum-likelihood sequence detection is employed. The spectral shape of the QPRIV signals facilitates equalization and achieving compliance with EMC regulations. Since in an FDDI system each transmitter can be clocked independently, the receiver must cope with phase drift between NEXT signals to be cancelled and signals received from the remote transmitter. With the chosen transceiver architecture, digital-to-analog conversion of transmit signals, analog-to-digital conversion of receive signals, and adaptive NEXT cancellation are performed synchronously with the transmitter clock. The rate change from transmit timing to controlled receive timing is accomplished by an adaptive equalizer in conjunction with an elastic buffer and occasional coefficient shifts. The equalizer is adjusted rapidly enough to allow for a maximal phase drift of ±100 ppm. The implementation of all digital signal-processing functions in a single 0.5 μm CMOS VLSI prototype chip is discussed. The employed standard-cell design resulted in a power consumption of 6 W. Significantly lower power consumption can be achieved by custom design of highly repetitive processing elements

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:13 ,  Issue: 9 )

Date of Publication:

Dec 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.