System Maintenance Notice:
Single article purchases and IEEE account management are currently unavailable. We apologize for the inconvenience.
By Topic

Performance evaluation of a fast computation algorithm for the DMT in high-speed subscriber loop

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Inkyu Lee ; Inf. Syst. Lab., Stanford Univ., CA ; Chow, J.S. ; Cioffi, J.M.

The discrete multitone (DMT) modulation is considered to be a viable transmission scheme for high-speed subscriber loop. In this paper, the fast algorithm for computing the equalizer settings derived in [1] is extended and applied for the DMT in high-speed subscriber loop. The channel pulse response is assumed to be given by the channel identification method, and then the equalizer filter settings are computed. In simulations, a fast algorithm for the symbol spaced equalizer in a colored noise channel is used. Simulation results performed in various CSA loops indicate that the fast algorithm yields the near-optimum settings for the DMT system

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:13 ,  Issue: 9 )