By Topic

GARCH model-based large-scale IP traffic matrix estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dingde Jiang ; Lab. of Broadband Opt. Fiber Transm. & Commun. Networks, Univ. of Electron. Sci. & Technol. of China, Chengdu ; Guangmin Hu

This letter proposes a novel method to estimate large-scale IP traffic matrix (TM). By using the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) to model the Origin-Destination (OD) flows, we can easily get rid of the ill-posed problem of large-scale IP TM. Compared with previous methods, our method does not only hold the lower estimation errors but also is more robust to the noise.

Published in:

Communications Letters, IEEE  (Volume:13 ,  Issue: 1 )