By Topic

The optimal throughput order of wireless ad hoc networks and how to achieve it

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Karande, S. ; Dept. of Electr. Eng., Univ. of California, Santa Cruz, CA ; Zheng Wang ; Sadjadpour, H.R. ; Garcia-Luna-Aceves, J.J.

We show that, as the number of nodes in the network n tends to infinity, the maximum concurrent flow (MCF) and the minimum cut-capacity scale as Theta(n2r3(n)/k) for a random choice of k ges Theta(n) source-destination pairs, where r(n) is the communication range in the network. In addition, we show that it is possible to attain this optimal order throughput in interference-constrained networks if nodes are capable of multiple-packet transmission and reception. This result provides an improvement of Theta(nr2(n)) over the highest achieved capacity reported to date. Furthermore, in stark contrast to the conventional wisdom that has evolved from the Gupta-Kumar results, our results show that the capacity of ad-hoc networks can actually increase with n while the communication range tends to zero!

Published in:

Military Communications Conference, 2008. MILCOM 2008. IEEE

Date of Conference:

16-19 Nov. 2008