By Topic

Microfluidic device for continuous magnetophoretic separation of red blood cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Iliescu, C. ; Inst. of Bioeng. & Nanotechnol., Singapore ; Barbarini, E. ; Avram, M. ; Xu, G.
more authors

This paper presents a microfluidic device for magnetophoretic separation red blood cells from blood under continuous flow. The separation method consist of continuous flow of a blood sample (diluted in PBS) through a microfluidic channel which presents on the bottom ldquodotsrdquo of ferromagnetic layer. By applying a magnetic field perpendicular on the flowing direction, the ferromagnetic ldquodotsrdquo generate a gradient of magnetic field which amplifies the magnetic force. As a result, the red blood cells are captured on the bottom of the microfluidic channel while the rest of the blood is collected at the outlet. Experimental results show that an average of 95 % of red blood cells is trapped in the device.

Published in:

Design, Test, Integration and Packaging of MEMS/MOEMS, 2008. MEMS/MOEMS 2008. Symposium on

Date of Conference:

9-11 April 2008