By Topic

Scalable Equivalent Circuit FET Model for MMIC Design Identified Through FW-EM Analyses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Davide Resca ; Dept. of Electron., Comput. Sci. & Syst., Univ. of Bologna, Bologna ; Antonio Raffo ; Alberto Santarelli ; Giorgio Vannini
more authors

A scalable approach to the modeling of millimeter- wave field-effect transistors is presented in this paper. This is based on the definition of a lumped extrinsic parasitic network, easily scalable with both the number of fingers and the finger widths. The identification of the extrinsic network parameters is carried out by means of accurate full-wave electromagnetic simulations based on the layout of a single reference device. In the paper, the parasitic effects of the gate/drain manifolds and of the source layout are investigated, leading to the definition of realistic linear scaling rules. The obtained model is experimentally validated by using a family of 0.25-mum millimeter-wave GaAs pseudomorphic HEMTs through the accurate prediction of critical performance indicators, such as the linear maximum power gain or the stability factor. Despite the simplicity of the proposed model, it proves to be as accurate as typical scalable models provided by foundries. Straightforward application of the scalable modeling approach to the optimum device geometry selection in a typical design problem is also presented.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:57 ,  Issue: 2 )