By Topic

Application of Representation Theory to Dual-Mode Microwave Bandpass Filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Amari, S. ; Dept. of Electr. & Comput. Eng., R. Mil. Coll. of Canada, Kingston, ON

This paper discusses the physics behind the operation of dual-mode bandpass filters from a field theoretical point of view. It is argued that the two degenerate modes of the empty dual-mode cavity, commonly taken as the vertical and horizontal polarizations, become nonphysical when coupling and tuning elements are inserted. Instead, the original degenerate modes are rotated, or modified in a complex way, to generate two new modes whose characteristics depend on the coupling and tuning elements. It is shown that the tuning elements, as placed in existing dual-mode filter designs, act as both tuning and coupling elements. A working dual-mode filter can be designed with only ldquotuningrdquo elements present. A physical representation of dual-mode filters in terms of the eigenresonances of the dual-mode cavities, with the tuning and coupling elements present, is introduced. Two fourth-order dual-mode rectangular cavity filters with the same response in the passband and its vicinity are also presented to demonstrate the similar role played by ldquotuningrdquo and coupling elements in dual-mode cavities. The first filter uses only ldquotuningrdquo elements, while the second is based only on ldquocouplingrdquo elements.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:57 ,  Issue: 2 )