By Topic

Identification of Move Method Refactoring Opportunities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tsantalis, N. ; Dept. of Appl. Inf., Univ. of Macedonia, Thessaloniki ; Chatzigeorgiou, A.

Placement of attributes/methods within classes in an object-oriented system is usually guided by conceptual criteria and aided by appropriate metrics. Moving state and behavior between classes can help reduce coupling and increase cohesion, but it is nontrivial to identify where such refactorings should be applied. In this paper, we propose a methodology for the identification of Move Method refactoring opportunities that constitute a way for solving many common feature envy bad smells. An algorithm that employs the notion of distance between system entities (attributes/methods) and classes extracts a list of behavior-preserving refactorings based on the examination of a set of preconditions. In practice, a software system may exhibit such problems in many different places. Therefore, our approach measures the effect of all refactoring suggestions based on a novel entity placement metric that quantifies how well entities have been placed in system classes. The proposed methodology can be regarded as a semi-automatic approach since the designer will eventually decide whether a suggested refactoring should be applied or not based on conceptual or other design quality criteria. The evaluation of the proposed approach has been performed considering qualitative, metric, conceptual, and efficiency aspects of the suggested refactorings in a number of open-source projects.

Published in:

Software Engineering, IEEE Transactions on  (Volume:35 ,  Issue: 3 )