By Topic

Electrical Mobility Separation of Airborne Particles Using Integrated Microfabricated Corona Ionizer and Separator Electrodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Airborne particles are separated according to their electrical mobilities using a microfabricated corona ionizer and separator electrodes. Oleic acid particles with sizes ranging from 30 to 300 nm are used to characterize the device. They are generated using a TSI 3075 constant output atomizer. These particles are electrically charged by a microfabricated corona ionizer, and the resultant particle electrical mobility is a function of the size of the particle. A varying DC potential difference of 0-2 kV across the separator electrodes selects charged particles of various electrical mobilities. These separated particles are subsequently counted using a TSI 3025A condensation particle counter. The device demonstrated its ability to separate particles between 50 and 130 nm into five distinct size bins. The operational flow rate is 0.5 L/min, and the micropin-between-planes corona ionizer operates at 1.3 kV with 7 muA. The theoretical and experimental electrical mobilities of the particles are compared.

Published in:

Journal of Microelectromechanical Systems  (Volume:18 ,  Issue: 1 )