By Topic

Symmetry-Based Scalable Lossless Compression of 3D Medical Image Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
V. Sanchez ; Dept. of Electr. & Comput. Eng., Univ. of British Columbia, Vancouver, BC ; R. Abugharbieh ; P. Nasiopoulos

We propose a novel symmetry-based technique for scalable lossless compression of 3D medical image data. The proposed method employs the 2D integer wavelet transform to decorrelate the data and an intraband prediction method to reduce the energy of the sub-bands by exploiting the anatomical symmetries typically present in structural medical images. A modified version of the embedded block coder with optimized truncation (EBCOT), tailored according to the characteristics of the data, encodes the residual data generated after prediction to provide resolution and quality scalability. Performance evaluations on a wide range of real 3D medical images show an average improvement of 15% in lossless compression ratios when compared to other state-of-the art lossless compression methods that also provide resolution and quality scalability including 3D-JPEG2000, JPEG2000, and H.264/AVC intra-coding.

Published in:

IEEE Transactions on Medical Imaging  (Volume:28 ,  Issue: 7 )