By Topic

Vulnerable Atherosclerotic Plaque Elasticity Reconstruction Based on a Segmentation-Driven Optimization Procedure Using Strain Measurements: Theoretical Framework

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)

It is now recognized that prediction of the vulnerable coronary plaque rupture requires not only an accurate quantification of fibrous cap thickness and necrotic core morphology but also a precise knowledge of the mechanical properties of plaque components. Indeed, such knowledge would allow a precise evaluation of the peak cap-stress amplitude, which is known to be a good biomechanical predictor of plaque rupture. Several studies have been performed to reconstruct a Young's modulus map from strain elastograms. It seems that the main issue for improving such methods does not rely on the optimization algorithm itself, but rather on preconditioning requiring the best estimation of the plaque components' contours. The present theoretical study was therefore designed to develop: (1) a preconditioning model to extract the plaque morphology in order to initiate the optimization process, and (2) an approach combining a dynamic segmentation method with an optimization procedure to highlight the modulogram of the atherosclerotic plaque. This methodology, based on the continuum mechanics theory prescribing the strain field, was successfully applied to seven intravascular ultrasound coronary lesion morphologies. The reconstructed cap thickness, necrotic core area, calcium area, and the Young's moduli of the calcium, necrotic core, and fibrosis were obtained with mean relative errors of 12%, 4% and 1%, 43%, 32%, and 2%, respectively.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:28 ,  Issue: 7 )