Cart (Loading....) | Create Account
Close category search window
 

Transceiver design for MIMO wireless systems incorporating hybrid ARQ

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Hybrid ARQ, an extension of ARQ that incorporates forward error correction coding, is a retransmission scheme employed in current communications systems. The use of HARQ can contribute to efficient utilization of the available resources and the provision of reliable services in latest-generation systems. This article focuses on wireless systems using HARQ with emphasis on the multiple-input multiple-output paradigm. MIMO-HARQ offers new opportunities because of the additional degrees of freedom introduced by the multiple antennas at the transmitter and receiver. The architecture of MIMO transceivers that are based on bit-interleaved coded modulation and employ HARQ is described. Additionally, receiver implementations are presented and compared in terms of complexity, memory requirements, and performance.

Published in:

Communications Magazine, IEEE  (Volume:47 ,  Issue: 1 )

Date of Publication:

January 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.