By Topic

High performance 3.3- and 5-V 0.5-μm CMOS technology for ASIC's

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

15 Author(s)
I. C. Kizilyalli ; AT&T Bell Labs., Orlando, FL, USA ; M. J. Thoma ; S. A. Lytle ; E. P. Martin
more authors

Process integration of two manufacturable high performance 0.5-μm CMOS technologies, one optimized for 5.0 V operation and the second optimized for 3.3-V operation, will be presented. The paper will emphasize poly-buffered LOGOS (PBL) isolation, MOS transistor design using conventional and statistical modeling to reduce circuit performance sensitivity to process fluctuations, gate oxide and gate length control, and hot carrier reliability of the transistors. Manufacturing and simulation data for both 3.3- and 5.0-V technologies will be shown. The nominal ring oscillator delay is measured for both 3.3- and 5.0-V technologies as 80 ps. Therefore, 5.0-V technology equivalent speed is achieved in the 3.3-V technology with a reduction in power consumption by a factor of 2.4

Published in:

IEEE Transactions on Semiconductor Manufacturing  (Volume:8 ,  Issue: 4 )