By Topic

Zero-aliasing for modeled faults

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lempel, M. ; Dept. of Comput. Sci., Univ. of Southern California, Los Angeles, CA, USA ; Gupta, S.K.

When using built-in self-test (BIST) for testing VLSI circuits the circuit response to an input test sequence, which may consist of thousands to millions of bits, is compacted into a signature which consists of only tens of bits. Usually a linear feedback shift register (LFSR) is used for response compaction via polynomial division. The compacting function is a many-to-one function and as a result some erroneous responses may be mapped to the same signature as the good response. This is known as aliasing. In this paper we deal with the selection of a feedback polynomial for the compacting LFSR, such that an erroneous response resulting from any modeled fault is mapped to a signature that is different from that for the good response. Such LFSRs are called zero-aliasing LFSRs. Only zero-aliasing LFSRs with primitive or irreducible feedback polynomials are considered due to their suitability for BIST test pattern generation

Published in:

Computers, IEEE Transactions on  (Volume:44 ,  Issue: 11 )