By Topic

Improving Multilabel Analysis of Music Titles: A Large-Scale Validation of the Correction Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pachet, F. ; SONY Comput. Sci. Lab., Paris ; Roy, P.

This paper addresses the problem of automatically extracting perceptive information from acoustic signals, in a supervised classification context. Global labels, i.e., atomic information describing a music title in its entirety, such as its genre, mood, main instruments, or type of vocals, are entered by humans. Classifiers are trained to map audio features to these labels. However, the performances of these classifiers on individual labels are rarely satisfactory. In the case we have to predict several labels simultaneously, we introduce a correction scheme to improve these performances. In this scheme-an instance of the classifier fusion paradigm-an extra layer of classifiers is built to exploit redundancies between labels and correct some of the errors coming from the individual acoustic classifiers. We describe a series of experiments aiming at validating this approach on a large-scale database of music and metadata (about 30 000 titles and 600 labels per title). The experiments show that the approach brings statistically significant improvements.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:17 ,  Issue: 2 )