By Topic

Distributed Control for Identical Dynamically Coupled Systems: A Decomposition Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Massioni, P. ; Delft Center for Syst. & Control, Delft Univ. of Technol., Delft ; Verhaegen, M.

We consider the problem of designing distributed controllers for a class of systems which can be obtained from the interconnection of a number of identical subsystems. If the state space matrices of these systems satisfy a certain structural property, then it is possible to derive a procedure for designing a distributed controller which has the same interconnection pattern as the plant. This procedure is basically a multiobjective optimization under linear matrix inequality constraints, with system norms as performance indices. The explicit expressions for computing these controllers are given for both H infin or H 2 performance, and both for static state feedback and dynamic output feedback (in discrete time). At the end of the paper, two application examples illustrate the effectiveness of the approach.

Published in:

Automatic Control, IEEE Transactions on  (Volume:54 ,  Issue: 1 )