By Topic

Precise Simulation Model for DNA Tile Self-Assembly

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fujibayashi, K. ; Dept. of Comput. Intell. & Syst. Sci., Tokyo Inst. of Technol., Yokohama ; Murata, S.

Self-assembling DNA complexes have been intensively studied in recent years aiming to achieve bottom-up construction of nanoscale objects. Among them a DNA complex called the DNA tile is known for its high programmability. DNA tiles can form 2-D crystals with programmable patterns via self-assembly. In order to create a wide range of complex objects by algorithmic self-assembly, we need a methodology to predict its behavior. To estimate the behavior, we can use thermodynamic simulations based on the Monte Carlo method. However, the previous simulation model assumed some simplified conditions and was not able to adequately explain the results of crystal growth experiments. Here, we propose the realistic tile assembly model, in which we are able to simulate the detailed conditions of the experimental protocols. By this model, the results of experiments (e.g., error rates, growth rate, and the formation and melting temperatures) are reproduced with high reliability. We think this model is useful to predict the behavior of DNA self-assembly and to design various types of DNA complexes.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:8 ,  Issue: 3 )