By Topic

Improved Resolution of the MCSA Method Via Hilbert Transform, Enabling the Diagnosis of Rotor Asymmetries at Very Low Slip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Puche-Panadero, R. ; Dept. of Electr. Eng., Univ. Politec. de Valencia, Valencia ; Pineda-Sanchez, M. ; Riera-Guasp, M. ; Roger-Folch, J.
more authors

This paper proposes an online/offline induction motor current signature analysis (MCSA) with advanced signal-and-data-processing algorithms, based on the Hilbert transform. MCSA is a method for motor diagnosis with stator-current signals. Although it is one of the most powerful online methods for diagnosing motor faults, it has some drawbacks that can degrade the performance and accuracy of a motor-diagnosis system. In particular, it is very difficult to detect broken rotor bars when the motor is operating at low slip or under no load, due to fast Fourier transform (FFT) frequency leakage and the small amplitude of the current components related to the fault. Therefore, advanced signal-and-data-processing algorithms are proposed. They consist of a proper sample selection algorithm, a Hilbert transformation of the stator-sampled current, and spectral analysis via FFT of the modulus of the resultant time-dependent vector modulus for achieving MCSA efficiently. Experimental results obtained on a 1.1 kW three-phase squirrel-cage induction motor are discussed.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:24 ,  Issue: 1 )