By Topic

Nonlinear Dimensionality Reduction by Locally Linear Inlaying

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yuexian Hou ; Sch. of Comput. Sci. & Technol., Tianjin Univ., Tianjin ; Peng Zhang ; Xingxing Xu ; Xiaowei Zhang
more authors

High-dimensional data is involved in many fields of information processing. However, sometimes, the intrinsic structures of these data can be described by a few degrees of freedom. To discover these degrees of freedom or the low-dimensional nonlinear manifold underlying a high-dimensional space, many manifold learning algorithms have been proposed. Here we describe a novel algorithm, locally linear inlaying (LLI), which combines simple geometric intuitions and rigorously established optimality to compute the global embedding of a nonlinear manifold. Using a divide-and-conquer strategy, LLI gains some advantages in itself. First, its time complexity is linear in the number of data points, and hence LLI can be implemented efficiently. Second, LLI overcomes problems caused by the nonuniform sample distribution. Third, unlike existing algorithms such as isometric feature mapping (Isomap), local tangent space alignment (LTSA), and locally linear coordination (LLC), LLI is robust to noise. In addition, to evaluate the embedding results quantitatively, two criteria based on information theory and Kolmogorov complexity theory, respectively, are proposed. Furthermore, we demonstrated the efficiency and effectiveness of our proposal by synthetic and real-world data sets.

Published in:

Neural Networks, IEEE Transactions on  (Volume:20 ,  Issue: 2 )