Cart (Loading....) | Create Account
Close category search window
 

Spectral analysis of atrial signals directly from surface ECG exploiting compressed spectrum

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bonizzi, P. ; Lab. I3S, Univ. of Nice - Sophia Antipolis, Nice ; Meste, O. ; Zarzoso, V.

Atrial fibrillation dominant frequency (AFDF) has been demonstrated to provide useful information on the characteristics of atrial fibrillation. The present work points forward a new method for AFDF estimation directly from a single-lead ECG recording, exploiting the concept of compressed spectrum as spectral estimator. The main purpose is to verify if ventricular activity subtraction might be avoided when the detection of the AFDF is the main goal. The greatest advantage of the proposed method is that it does not require any detection of the QT interval, making it very low cost and simple. Comparison of the estimated AFDFs with those obtained from the analysis of the corresponding atrial signals extracted using a Bayesian spatio-temporal QRST-cancellation technique showed that the two estimates were very similar. We conclude that the estimation of the AFDF can be pursued directly from a single-lead ECG recording, without any kind of QRST-subtraction or QT-detection.

Published in:

Computers in Cardiology, 2008

Date of Conference:

14-17 Sept. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.