By Topic

An immune approach to classifying the high-dimensional datasets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chmielewski, A. ; Fac. of Comput. Sci., Bialystok Tech. Univ., Bialystok ; Wierzchon, S.T.

This paper presents an immune-based approach to problem of binary classification and novelty detection in high-dimensional datasets. It is inspired by the negative selection mechanism, which discriminates between self and nonself elements using only partial information. Our approach incorporates two types of detectors: binary and real-valued. Relatively short binary receptors are used for primary detection, while the real valued detectors are used to resolve eventual doubts. Such a hybrid solution is much more economical in comparison with ldquopurerdquo approaches. The binary detectors are more faster than real-valued ones, what allows minimize computationally and timely complex operations on real values. Additionally, regardless of type of encoding, the process of samplepsilas censoring is conducted with relatively small part of its attributes.

Published in:

Computer Science and Information Technology, 2008. IMCSIT 2008. International Multiconference on

Date of Conference:

20-22 Oct. 2008