By Topic

Absolute cerebral blood flow with 15O-water and PET: determination without a measured input function

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Carson, R.E. ; PET Dept., Nat. Inst. of Health, Bethesda, MD, USA ; Yuchen Yan ; Shrager, R.

PET cerebral blood flow (CBF) methods require tissue and arterial blood radioactivity measurements to yield absolute values. The authors have developed a method to estimate CBF without a measured input function. For N pixels and M scan frames, the authors estimate N+M parameters (N flow values and M input function integrals) from N×M measurements with weighted least squares using the iterative Gauss-Newton (GN) algorithm. Tracer distribution volume is assumed to be known. This method was tested with simulated and human image data. Simulation GN errors in whole brain CBF were -3±2%, with uniform percent errors for all flow values. GN image quality was comparable to that obtained from algorithms which require the measured input function. Results with actual scan data (8 subjects, 4 studies each) had errors in global flow of -77±3% due to violations of the model assumptions, particularly tissue heterogeneity. Use of a modified algorithm which included inter-pixel variations in the distribution volume to account for heterogeneity reduced the bias but the results are overly sensitive to the assumed value of distribution volume variability. Although this method can theoretically provide absolute CBF, it will be useful in practice only if its large sensitivity to model inaccuracies can be controlled

Published in:

Nuclear Science Symposium and Medical Imaging Conference, 1994., 1994 IEEE Conference Record  (Volume:4 )

Date of Conference:

30 Oct-5 Nov 1994