By Topic

Wavelet Reconstruction of Nonuniformly Sampled Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Leming Qu ; Dept. of Math., Boise State Univ., Boise, ID ; Partha S. Routh ; Phil D. Anno

For the reconstruction of a nonuniformly sampled signal based on its noisy observations, we propose a level dependent l1 penalized wavelet reconstruction method. The LARS/Lasso algorithm is applied to solve the Lasso problem. The data adaptive choice of the regularization parameters is based on the AIC and the degrees of freedom is estimated by the number of nonzero elements in the Lasso solution. Simulation results conducted on some commonly used 1_D test signals illustrate that the proposed method possesses good empirical properties.

Published in:

IEEE Signal Processing Letters  (Volume:16 ,  Issue: 2 )