Cart (Loading....) | Create Account
Close category search window

Robust Design of a TCSC Oscillation Damping Controller in a Weak 500-kV Interconnection Considering Multiple Power Flow Scenarios and External Disturbances

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Simoes, A.M. ; Control Syst. Dept., ONERA-CERT, Toulouse ; Savelli, D.C. ; Pellanda, P.C. ; Martins, N.
more authors

The power oscillation damping (POD) controllers implemented in the two thyristor controlled series compensators of the Brazilian North-South (NS) interconnection, in the year 1999, were solely intended to damp the low-frequency NS oscillation mode. These controllers are still under operation and are derived from the modulus of the active power flow in the NS line that is phase-lagged at the frequency of the NS mode and may experience relatively large excursions generated by exogenous disturbances. This paper utilizes the same 1999 data to compare the performance of a proposed robust POD controller design with those of two conventional designs. A recent robust control synthesis algorithm used in this work is based on a nonsmooth optimization technique and has the capability to handle various controller structures, including reduced-order, and to deal with time-domain constraints on both controlled and measured outputs. Moreover, the nonsmooth design technique encompasses multiple operating conditions subject to various test signals, hence building a truly time-domain multi-scenarios approach. According to the results discussed hereafter, this is a key advantage in the industrial context of increasing demand for performance and robustness. The described results relate to a large-scale system model used in the feasibility studies for that interconnection.

Published in:

Power Systems, IEEE Transactions on  (Volume:24 ,  Issue: 1 )

Date of Publication:

Feb. 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.