Cart (Loading....) | Create Account
Close category search window
 

Estimation of travel time using fuzzy clustering method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zheng, P. ; Transp. Res. Group, Univ. of Southampton, Southampton ; McDonald, M.

A methodology to estimate overall travel time from individual travel time measurements within a time window is presented. To better handle data with complex outlier generation mechanisms, fuzzy clustering techniques have been used to represent relationships between individual travel time data collected within a measuring time window. The data set is considered to be a fuzzy set to which each data point belongs at some degrees of membership. This allows transitions from the main body of data to extreme data points to be treated in a smooth and fuzzy fashion. Two algorithms have been developed based on dasiapointdasia and dasialinedasia fuzzy cluster prototypes. Iterative procedures have been developed to calculate the fuzzy cluster centre and the fuzzy line. A novel estimation method based on time projection of a fuzzy line has been proposed. The method has the advantage of being robust by using a wide time window and the timeliness by employing time projection in resolving the most recent travel time estimation. Unlike deterministic approaches where hard thresholds need to be specified in order to exclude outliers, the proposed methods estimate travel times using all available data and, thus, can be applied in a wide variety of scenarios without fine tuning of the threshold.

Published in:

Intelligent Transport Systems, IET  (Volume:3 ,  Issue: 1 )

Date of Publication:

March 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.