Cart (Loading....) | Create Account
Close category search window
 

Information-Theoretic Model of Evolution over Protein Communication Channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liuling Gong ; Dept. of Electr. & Comput. Eng., Univ. of Illinois at Chicago, Chicago, IL, USA ; Bouaynaya, N. ; Schonfeld, D.

In this paper, we propose a communication model of evolution and investigate its information-theoretic bounds. The process of evolution is modeled as the retransmission of information over a protein communication channel, where the transmitted message is the organism's proteome encoded in the DNA. We compute the capacity and the rate distortion functions of the protein communication system for the three domains of life: Archaea, Bacteria, and Eukaryotes. The tradeoff between the transmission rate and the distortion in noisy protein communication channels is analyzed. As expected, comparison between the optimal transmission rate and the channel capacity indicates that the biological fidelity does not reach the Shannon optimal distortion. However, the relationship between the channel capacity and rate distortion achieved for different biological domains provides tremendous insight into the dynamics of the evolutionary processes of the three domains of life. We rely on these results to provide a model of genome sequence evolution based on the two major evolutionary driving forces: mutations and unequal crossovers.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:8 ,  Issue: 1 )

Date of Publication:

Jan.-Feb. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.