Cart (Loading....) | Create Account
Close category search window
 

Use of body-surface potential mapping and computer model simulations for optimal programming of cardiac resynchronization therapy devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mohindra, R. ; Dalhousie Univ., Halifax, NS ; Sapp, J.L. ; Clements, J.C. ; Horacek, B.M.

It has been proposed that by optimizing the timing of activation between the ventricles (V-V interval), with the aid of body-surface potential mapping (BSPM), the success rate of cardiac resynchronization therapy (CRT) devices could be improved. We recorded 120-electrode BSPM data and CT scans from two patients with implanted CRT devices and calculated, by means of electrocardiographic inverse solution, epicardial potentials and isochrones of activation for different V-V intervals. To gain better insight, we used a computer model of ventricular activation to simulate activation isochrones for CRT pacing. As a measure of inter-ventricular synchrony for a variety of V-V settings we used the area between the LV and RV percent surface activated curves. We have demonstrated that by aiming to minimize dyssynchrony in ventricular activation patterns, an optimal CRT pacing V-V interval can be selected. The computer model simulations provided a baseline measure by which our measure of synchrony can be evaluated.

Published in:

Computers in Cardiology, 2007

Date of Conference:

Sept. 30 2007-Oct. 3 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.