By Topic

Distributed Energy-Efficient Scheduling for Data-Intensive Applications with Deadline Constraints on Data Grids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Cong Liu ; Univ. of North Carolina at Chapel Hill, Chapel Hill, NC ; Xiao Qin ; Kulkarni, S. ; Chengjun Wang
more authors

Although data duplications may be able to improve the performance of data-intensive applications on data grids, a large number of data replicas inevitably increase energy dissipation in storage resources on the data grids. In order to implement a data grid with high energy efficiency, we address in this study the issue of energy-efficient scheduling for data grids supporting real-time and data-intensive applications. Taking into account both data locations and application properties, we design a novel Distributed Energy-Efficient Scheduler (or DEES for short) that aims to seamlessly integrate the process of scheduling tasks with data placement strategies to provide energy savings. DEES is distributed in the essence - it can successfully schedule tasks and save energy without knowledge of a complete grid state. DEES encompasses three main components: energy-aware ranking, performance-aware scheduling, and energy-aware dispatching. By reducing the amount of data replications and task transfers, DEES effectively saves energy. Simulation results based on a real-world trace demonstrate that with respect to energy consumption, DEES conserves over 35% more energy than previous approaches without degrading the performance.

Published in:

Performance, Computing and Communications Conference, 2008. IPCCC 2008. IEEE International

Date of Conference:

7-9 Dec. 2008