By Topic

A Compact, Self-Contained High Power Microwave Source Based on a Reflex-Triode Vircator and Explosively Driven Pulsed Power

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Young, A. ; Center for Pulsed Power & Power Electron., Texas Tech Univ., Lubbock, TX ; Holt, T. ; Elsayed, M. ; Walter, J.
more authors

Single-shot high power microwave (HPM) systems are of particular interest in the defense industry for applications such as electronic warfare. Virtual cathode oscillators (vircators) are manufactured from relatively simple and inexpensive components, which make them ideal candidates in single-shot systems. The flux compression generator (FCG) is an attractive driver for these systems due to its potential for high energy amplification and inherent single-shot nature. A self-contained (battery operated prime power), compact (0.038 m3), FCG-based power delivery system has been developed that is capable of delivering gigawatts of power to a vircator. Experiments were conducted with the delivery system connected to a resistive dummy load and then to a reflex-triode vircator. In order to optimize the performance of the vircator when driven by the power delivery system, a second experimental setup was constructed using a Marx-generator based system operating at similar voltages and rise-times. Performance measures of the delivery system when discharged into a resistive load will be presented, as well as vircator output power levels and waveforms from both experimental setups.

Published in:

IEEE International Power Modulators and High Voltage Conference, Proceedings of the 2008

Date of Conference:

27-31 May 2008