Cart (Loading....) | Create Account
Close category search window
 

Performance of UWB Receivers with Partial CSI Using a Simple Body Area Network Channel Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zasowski, T. ; Swisscom Strategy & Innovation, Bern ; Wittneben, A.

Ultra wideband (UWB) communication is a very promising candidate for the use in wireless body area networks (BAN). The high UWB peak data rate allows for medium average data rates in combination with a very low duty cycle, which is the key for a very low power consumption. Devices in a wireless BAN require low complexity. Hence, mainly non-coherent receivers such as energy detector and transmitted-reference receiver are suited. In this paper, the symbol-wise maximum-likelihood (ML) detectors for pulse position modulation (PPM) and transmitted reference pulse amplitude modulation (TR PAM) are derived assuming partial channel state information (CSI) at the receiver. Additionally, also the ML detectors for a combination of PPM and TR PAM are presented. The performance of the derived receiver structures is evaluated using a novel BAN channel model not distinguishing line-of-sight and non line-of-sight situations. This simple channel model is based on 1100 channel measurements in the frequency range between 2 and 8 GHz, which were measured in an anechoic chamber. Using the BAN channel model, performance of the derived receiver structures is evaluated showing that the knowledge of the average power delay profile (APDP) at the receiver improves performance substantially. Requiring only slightly more complexity such receivers are a well suited alternative to non-coherent receivers for the use in a BAN.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:27 ,  Issue: 1 )

Date of Publication:

January 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.