By Topic

Inter-frame Change Directing Online Clustering of Multiple Moving Objects for Video-Based Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Guangyan Huang ; Inst. of Software, Chinese Acad. of Sci., Beijing ; Jing He ; Zhiming Ding

Recognition of multiple moving objects is a very important task for achieving user-cared knowledge to send to the base station in wireless video-based sensor networks. However, video based sensor nodes, which have constrained resources and produce huge amount of video streams continuously, bring a challenge to segment multiple moving objects from the video stream online. Traditional efficient clustering algorithms such as DBSCAN cannot run time-efficiently and even fail to run on limited memory space on sensor nodes, because the number of pixel points is too huge. This paper provides a novel algorithm named Inter-Frame Change Directing Online clustering (IFCDO clustering) for segmenting multiple moving objects from video stream on sensor nodes. IFCDO clustering only needs to group inter-frame different pixels, thus it reduces both space and time complexity while achieves robust clusters the same as DBSCAN. Experiment results show IFCDO clustering excels DBSCAN in terms of both time and space efficiency.

Published in:

Web Intelligence and Intelligent Agent Technology, 2008. WI-IAT '08. IEEE/WIC/ACM International Conference on  (Volume:3 )

Date of Conference:

9-12 Dec. 2008